1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
register cur_privilege :
Privilege
register cur_inst :
xlenbits
bitfield Misa :
xlenbits = {
MXL :
xlen - 1 ..
xlen - 2,
Z :
25,
Y :
24,
X :
23,
W :
22,
V :
21,
U :
20,
T :
19,
S :
18,
R :
17,
Q :
16,
P :
15,
O :
14,
N :
13,
M :
12,
L :
11,
K :
10,
J :
9,
I :
8,
H :
7,
G :
6,
F :
5,
E :
4,
D :
3,
C :
2,
B :
1,
A :
0
}
register misa :
Misa =
[
Mk_Misa(
zeros())
with
MXL =
architecture_bits(
if xlen == 32 then RV32 else RV64),
]
let sys_enable_writable_misa :
bool =
config base.
writable_misa
let sys_enable_writable_fiom :
bool =
config base.
writable_fiom
let sys_writable_hpm_counters :
bits(
32) =
config base.
writable_hpm_counters
function clause currentlyEnabled(
Ext_Sstc) =
hartSupports(
Ext_Sstc)
val ext_veto_disable_C :
unit ->
bool
function legalize_misa(
m :
Misa,
v :
xlenbits) ->
Misa = {
let v =
Mk_Misa(
v);
if not(
sys_enable_writable_misa)
| (
v[
C]
== 0b0 & (
nextPC[
1]
== bitone | ext_veto_disable_C()))
then m
else [
m with
A =
if hartSupports(
Ext_A)
then v[
A]
else 0b0,
B =
if hartSupports(
Ext_B)
then v[
B]
else 0b0,
C =
if hartSupports(
Ext_C)
then v[
C]
else 0b0,
D =
if hartSupports(
Ext_D)
& v[
F]
== 0b1 then v[
D]
else 0b0,
F =
if hartSupports(
Ext_F)
then v[
F]
else 0b0,
H =
if hartSupports(
Ext_H)
then v[
H]
else 0b0,
I =
bool_to_bits(
not(
base_E_enabled)),
E =
bool_to_bits(
base_E_enabled),
M =
if hartSupports(
Ext_M)
then v[
M]
else 0b0,
S =
if hartSupports(
Ext_S)
& v[
U]
== 0b1 then v[
S]
else 0b0,
U =
if hartSupports(
Ext_U)
then v[
U]
else 0b0,
V =
if hartSupports(
Ext_V)
& v[
F]
== 0b1 & v[
D]
== 0b1 then v[
V]
else 0b0,
]
}
mapping clause csr_name_map =
0x301 <->
"misa"
function clause is_CSR_accessible(
0x301, _, _) =
true function clause read_CSR(
0x301) =
misa.
bits
function clause write_CSR(
0x301,
value) = {
misa =
legalize_misa(
misa,
value);
Ok(
misa.
bits) }
function clause currentlyEnabled(
Ext_U) =
hartSupports(
Ext_U)
& misa[
U]
== 0b1 & currentlyEnabled(
Ext_Zicsr)
function clause currentlyEnabled(
Ext_S) =
hartSupports(
Ext_S)
& misa[
S]
== 0b1 & currentlyEnabled(
Ext_Zicsr)
function clause currentlyEnabled(
Ext_Svbare) =
currentlyEnabled(
Ext_S)
function clause currentlyEnabled(
Ext_Sv32) =
hartSupports(
Ext_Sv32)
& currentlyEnabled(
Ext_S)
function clause currentlyEnabled(
Ext_Sv39) =
hartSupports(
Ext_Sv39)
& currentlyEnabled(
Ext_S)
function clause currentlyEnabled(
Ext_Sv48) =
hartSupports(
Ext_Sv48)
& currentlyEnabled(
Ext_S)
function clause currentlyEnabled(
Ext_Sv57) =
hartSupports(
Ext_Sv57)
& currentlyEnabled(
Ext_S)
function virtual_memory_supported() ->
bool = {
currentlyEnabled(
Ext_Sv32)
| currentlyEnabled(
Ext_Sv39)
| currentlyEnabled(
Ext_Sv48)
| currentlyEnabled(
Ext_Sv57)
}
function lowest_supported_privLevel() ->
Privilege =
if currentlyEnabled(
Ext_U)
then User else Machine
function have_nominal_privLevel(
priv :
nom_priv_bits) ->
bool =
match priv {
0b00 =>
currentlyEnabled(
Ext_U),
0b01 =>
currentlyEnabled(
Ext_S),
0b10 =>
false,
0b11 =>
true,
}
bitfield Mstatus :
bits(
64) = {
SD :
xlen - 1,
MPELP:
41,
MBE :
37,
SBE :
36,
SXL :
35 ..
34,
UXL :
33 ..
32,
SPELP:
23,
TSR :
22,
TW :
21,
TVM :
20,
MXR :
19,
SUM :
18,
MPRV :
17,
XS :
16 ..
15,
FS :
14 ..
13,
MPP :
12 ..
11,
VS :
10 ..
9,
SPP :
8,
MPIE :
7,
SPIE :
5,
MIE :
3,
SIE :
1,
}
function legalize_mstatus(
o :
Mstatus,
v :
bits(
64)) ->
Mstatus = {
let v =
Mk_Mstatus(
v);
let o = [
o with
MPELP =
if hartSupports(
Ext_Zicfilp)
then v[
MPELP]
else 0b0,
SPELP =
if hartSupports(
Ext_Zicfilp)
then v[
SPELP]
else 0b0,
TSR =
if currentlyEnabled(
Ext_S)
then v[
TSR]
else 0b0,
TW =
if currentlyEnabled(
Ext_U)
then v[
TW]
else 0b0,
TVM =
if currentlyEnabled(
Ext_S)
then v[
TVM]
else 0b0,
MXR =
if currentlyEnabled(
Ext_S)
then v[
MXR]
else 0b0,
SUM =
if virtual_memory_supported()
then v[
SUM]
else 0b0,
MPRV =
if currentlyEnabled(
Ext_U)
then v[
MPRV]
else 0b0,
XS =
extStatus_to_bits(
Off),
FS =
if hartSupports(
Ext_Zfinx)
then extStatus_to_bits(
Off)
else v[
FS],
MPP =
if have_nominal_privLevel(
v[
MPP])
then v[
MPP]
else privLevel_to_bits(
lowest_supported_privLevel()),
SPP =
if currentlyEnabled(
Ext_S)
then v[
SPP]
else 0b0,
VS =
if hartSupports(
Ext_V)
then v[
VS]
else 0b00,
MPIE =
v[
MPIE],
SPIE =
if currentlyEnabled(
Ext_S)
then v[
SPIE]
else 0b0,
MIE =
v[
MIE],
SIE =
if currentlyEnabled(
Ext_S)
then v[
SIE]
else 0b0,
];
let dirty =
extStatus_of_bits(
o[
FS])
== Dirty |
extStatus_of_bits(
o[
XS])
== Dirty |
extStatus_of_bits(
o[
VS])
== Dirty;
[
o with SD =
bool_to_bits(
dirty)]
}
register mstatus :
Mstatus = {
let mxl =
architecture_bits(
if xlen == 32 then RV32 else RV64);
[
Mk_Mstatus(
zeros())
with
SXL =
if xlen != 32 & hartSupports(
Ext_S)
then mxl else zeros(),
UXL =
if xlen != 32 & hartSupports(
Ext_U)
then mxl else zeros(),
]
}
mapping clause csr_name_map =
0x300 <->
"mstatus"
mapping clause csr_name_map =
0x310 <->
"mstatush"
function clause is_CSR_accessible(
0x300, _, _) =
true function clause is_CSR_accessible(
0x310, _, _) =
xlen == 32
function clause read_CSR(
0x300) =
mstatus.
bits[
xlen - 1 ..
0]
function clause read_CSR(
0x310 if xlen == 32) =
mstatus.
bits[
63 ..
32]
function clause write_CSR((
0x300,
value)
if xlen == 64) = {
mstatus =
legalize_mstatus(
mstatus,
value);
Ok(
mstatus.
bits) }
function clause write_CSR((
0x300,
value)
if xlen == 32) = {
mstatus =
legalize_mstatus(
mstatus,
mstatus.
bits[
63 ..
32] @
value);
Ok(
mstatus.
bits[
31 ..
0]) }
function clause write_CSR((
0x310,
value)
if xlen == 32) = {
mstatus =
legalize_mstatus(
mstatus,
value @
mstatus.
bits[
31 ..
0]);
Ok(
mstatus.
bits[
63 ..
32]) }
function architecture(
priv :
Privilege) ->
Architecture = {
if xlen == 32
then return RV32;
architecture_bits(
match priv {
Machine =>
misa[
MXL],
Supervisor =>
mstatus[
SXL],
User =>
mstatus[
UXL],
VirtualUser =>
internal_error(
__FILE__,
__LINE__,
"Hypervisor extension not supported"),
VirtualSupervisor =>
internal_error(
__FILE__,
__LINE__,
"Hypervisor extension not supported"),
})
}
function in32BitMode() ->
bool = {
architecture(
cur_privilege)
== RV32
}
bitfield Seccfg :
bits(
64) = {
MLPE :
10,
SSEED :
9,
USEED :
8,
}
function legalize_mseccfg(
o :
Seccfg,
v :
bits(
64)) ->
Seccfg = {
let sseed_read_only_zero =
(
config extensions.
Zkr.
sseed_read_only_zero :
bool)
| not(
currentlyEnabled(
Ext_S))
| not(
currentlyEnabled(
Ext_Zkr));
let useed_read_only_zero =
(
config extensions.
Zkr.
useed_read_only_zero :
bool)
| not(
currentlyEnabled(
Ext_U))
| not(
currentlyEnabled(
Ext_Zkr));
let v =
Mk_Seccfg(
v);
[
o with
MLPE =
if hartSupports(
Ext_Zicfilp)
then v[
MLPE]
else 0b0,
SSEED =
if sseed_read_only_zero then 0b0 else v[
SSEED],
USEED =
if useed_read_only_zero then 0b0 else v[
USEED],
]
}
register mseccfg :
Seccfg =
legalize_mseccfg(
Mk_Seccfg(
zeros()),
zeros())
mapping clause csr_name_map =
0x747 <->
"mseccfg"
mapping clause csr_name_map =
0x757 <->
"mseccfgh"
function clause is_CSR_accessible(
0x747, _, _) =
currentlyEnabled(
Ext_Zkr)
| hartSupports(
Ext_Zicfilp)
function clause is_CSR_accessible(
0x757, _, _) = (
currentlyEnabled(
Ext_Zkr)
| hartSupports(
Ext_Zicfilp))
& xlen == 32
function clause read_CSR(
0x747) =
mseccfg.
bits[
xlen - 1 ..
0]
function clause read_CSR(
0x757 if xlen == 32) =
mseccfg.
bits[
63 ..
32]
function clause write_CSR((
0x747,
value)
if xlen == 32) = {
mseccfg =
legalize_mseccfg(
mseccfg,
mseccfg.
bits[
63 ..
32] @
value);
Ok(
mseccfg.
bits[
31 ..
0])
}
function clause write_CSR((
0x747,
value)
if xlen == 64) = {
mseccfg =
legalize_mseccfg(
mseccfg,
value);
Ok(
mseccfg.
bits)
}
function clause write_CSR((
0x757,
value)
if xlen == 32) = {
mseccfg =
legalize_mseccfg(
mseccfg,
value @
mseccfg.
bits[
31 ..
0]);
Ok(
mseccfg.
bits[
63 ..
32])
}
bitfield MEnvcfg :
bits(
64) = {
STCE :
63,
PBMTE :
62,
CBZE :
7,
CBCFE :
6,
CBIE :
5 ..
4,
LPE :
2,
FIOM :
0,
}
bitfield SEnvcfg :
xlenbits = {
CBZE :
7,
CBCFE :
6,
CBIE :
5 ..
4,
LPE :
2,
FIOM :
0,
}
function legalize_menvcfg(
o :
MEnvcfg,
v :
bits(
64)) ->
MEnvcfg = {
let v =
Mk_MEnvcfg(
v);
[
o with
FIOM =
if sys_enable_writable_fiom then v[
FIOM]
else 0b0,
LPE =
if hartSupports(
Ext_Zicfilp)
then v[
LPE]
else 0b0,
CBZE =
if currentlyEnabled(
Ext_Zicboz)
then v[
CBZE]
else 0b0,
CBCFE =
if currentlyEnabled(
Ext_Zicbom)
then v[
CBCFE]
else 0b0,
CBIE =
if currentlyEnabled(
Ext_Zicbom)
then (
if v[
CBIE]
!= 0b10 then v[
CBIE]
else 0b00)
else 0b00,
STCE =
if currentlyEnabled(
Ext_Sstc)
then v[
STCE]
else 0b0,
]
}
function legalize_senvcfg(
o :
SEnvcfg,
v :
xlenbits) ->
SEnvcfg = {
let v =
Mk_SEnvcfg(
v);
[
o with
FIOM =
if sys_enable_writable_fiom then v[
FIOM]
else 0b0,
LPE =
if hartSupports(
Ext_Zicfilp)
then v[
LPE]
else 0b0,
CBZE =
if currentlyEnabled(
Ext_Zicboz)
then v[
CBZE]
else 0b0,
CBCFE =
if currentlyEnabled(
Ext_Zicbom)
then v[
CBCFE]
else 0b0,
CBIE =
if currentlyEnabled(
Ext_Zicbom)
then (
if v[
CBIE]
!= 0b10 then v[
CBIE]
else 0b00)
else 0b00,
]
}
register menvcfg :
MEnvcfg =
legalize_menvcfg(
Mk_MEnvcfg(
zeros()),
zeros())
register senvcfg :
SEnvcfg =
legalize_senvcfg(
Mk_SEnvcfg(
zeros()),
zeros())
mapping clause csr_name_map =
0x30A <->
"menvcfg"
mapping clause csr_name_map =
0x31A <->
"menvcfgh"
mapping clause csr_name_map =
0x10A <->
"senvcfg"
function clause is_CSR_accessible(
0x30A, _, _) =
currentlyEnabled(
Ext_U)
function clause is_CSR_accessible(
0x31A, _, _) =
currentlyEnabled(
Ext_U)
& (
xlen == 32)
function clause is_CSR_accessible(
0x10A, _, _) =
currentlyEnabled(
Ext_S)
function clause read_CSR(
0x30A) =
menvcfg.
bits[
xlen - 1 ..
0]
function clause read_CSR(
0x31A if xlen == 32) =
menvcfg.
bits[
63 ..
32]
function clause read_CSR(
0x10A) =
senvcfg.
bits[
xlen - 1 ..
0]
function clause write_CSR((
0x30A,
value)
if xlen == 32) = {
menvcfg =
legalize_menvcfg(
menvcfg,
menvcfg.
bits[
63 ..
32] @
value);
Ok(
menvcfg.
bits[
31 ..
0]) }
function clause write_CSR((
0x30A,
value)
if xlen == 64) = {
menvcfg =
legalize_menvcfg(
menvcfg,
value);
Ok(
menvcfg.
bits) }
function clause write_CSR((
0x31A,
value)
if xlen == 32) = {
menvcfg =
legalize_menvcfg(
menvcfg,
value @
menvcfg.
bits[
31 ..
0]);
Ok(
menvcfg.
bits[
63 ..
32]) }
function clause write_CSR(
0x10A,
value) = {
senvcfg =
legalize_senvcfg(
senvcfg,
zero_extend(
value));
Ok(
senvcfg.
bits[
xlen - 1 ..
0]) }
function is_fiom_active() ->
bool = {
match cur_privilege {
Machine =>
false,
Supervisor =>
menvcfg[
FIOM]
== 0b1,
User => (
menvcfg[
FIOM]
| senvcfg[
FIOM])
== 0b1,
VirtualUser =>
internal_error(
__FILE__,
__LINE__,
"Hypervisor extension not supported"),
VirtualSupervisor =>
internal_error(
__FILE__,
__LINE__,
"Hypervisor extension not supported"),
}
}
bitfield Minterrupts :
xlenbits = {
MEI :
11,
SEI :
9,
MTI :
7,
STI :
5,
MSI :
3,
SSI :
1,
}
function legalize_mip(
o :
Minterrupts,
v :
xlenbits) ->
Minterrupts = {
let v =
Mk_Minterrupts(
v);
[
o with
SEI =
if currentlyEnabled(
Ext_S)
then v[
SEI]
else 0b0,
SSI =
if currentlyEnabled(
Ext_S)
then v[
SSI]
else 0b0,
STI =
if currentlyEnabled(
Ext_S)
then (
if currentlyEnabled(
Ext_Sstc)
& menvcfg[
STCE]
== 0b1 then o[
STI]
else v[
STI]
)
else 0b0,
]
}
function legalize_mie(
o :
Minterrupts,
v :
xlenbits) ->
Minterrupts = {
let v =
Mk_Minterrupts(
v);
[
o with
MEI =
v[
MEI],
MTI =
v[
MTI],
MSI =
v[
MSI],
SEI =
if currentlyEnabled(
Ext_S)
then v[
SEI]
else 0b0,
STI =
if currentlyEnabled(
Ext_S)
then v[
STI]
else 0b0,
SSI =
if currentlyEnabled(
Ext_S)
then v[
SSI]
else 0b0,
]
}
function legalize_mideleg(
o :
Minterrupts,
v :
xlenbits) ->
Minterrupts = {
[
Mk_Minterrupts(
v)
with MEI =
0b0,
MTI =
0b0,
MSI =
0b0]
}
bitfield Medeleg :
bits(
64) = {
SAMO_Page_Fault :
15,
Load_Page_Fault :
13,
Fetch_Page_Fault :
12,
MEnvCall :
11,
SEnvCall :
9,
UEnvCall :
8,
SAMO_Access_Fault :
7,
SAMO_Addr_Align :
6,
Load_Access_Fault :
5,
Load_Addr_Align :
4,
Breakpoint :
3,
Illegal_Instr :
2,
Fetch_Access_Fault:
1,
Fetch_Addr_Align :
0
}
function legalize_medeleg(
o :
Medeleg,
v :
bits(
64)) ->
Medeleg = {
[
Mk_Medeleg(
v)
with MEnvCall =
0b0]
}
register mie :
Minterrupts register mip :
Minterrupts register medeleg :
Medeleg register mideleg :
Minterrupts
mapping clause csr_name_map =
0x304 <->
"mie"
mapping clause csr_name_map =
0x344 <->
"mip"
mapping clause csr_name_map =
0x302 <->
"medeleg"
mapping clause csr_name_map =
0x312 <->
"medelegh"
mapping clause csr_name_map =
0x303 <->
"mideleg"
function clause is_CSR_accessible(
0x304, _, _) =
true function clause is_CSR_accessible(
0x344, _, _) =
true function clause is_CSR_accessible(
0x302, _, _) =
currentlyEnabled(
Ext_S)
function clause is_CSR_accessible(
0x312, _, _) =
currentlyEnabled(
Ext_S)
& xlen == 32 function clause is_CSR_accessible(
0x303, _, _) =
currentlyEnabled(
Ext_S)
function clause read_CSR(
0x304) =
mie.
bits
function clause read_CSR(
0x344) =
mip.
bits
function clause read_CSR(
0x302) =
medeleg.
bits[
xlen - 1 ..
0]
function clause read_CSR(
0x312 if xlen == 32) =
medeleg.
bits[
63 ..
32]
function clause read_CSR(
0x303) =
mideleg.
bits
function clause write_CSR(
0x304,
value) = {
mie =
legalize_mie(
mie,
value);
Ok(
mie.
bits) }
function clause write_CSR(
0x344,
value) = {
mip =
legalize_mip(
mip,
value);
Ok(
mip.
bits) }
function clause write_CSR((
0x302,
value)
if xlen == 64) = {
medeleg =
legalize_medeleg(
medeleg,
value);
Ok(
medeleg.
bits) }
function clause write_CSR((
0x302,
value)
if xlen == 32) = {
medeleg =
legalize_medeleg(
medeleg,
medeleg.
bits[
63 ..
32] @
value);
Ok(
medeleg.
bits[
31 ..
0]) }
function clause write_CSR((
0x312,
value)
if xlen == 32) = {
medeleg =
legalize_medeleg(
medeleg,
value @
medeleg.
bits[
31 ..
0]);
Ok(
medeleg.
bits[
63 ..
32]) }
function clause write_CSR(
0x303,
value) = {
mideleg =
legalize_mideleg(
mideleg,
value);
Ok(
mideleg.
bits) }
bitfield Mtvec :
xlenbits = {
Base :
xlen - 1 ..
2,
Mode :
1 ..
0
}
register mtvec :
Mtvec
function legalize_tvec(
o :
Mtvec,
v :
xlenbits) ->
Mtvec = {
let v =
Mk_Mtvec(
v);
match (
trapVectorMode_of_bits(
v[
Mode])) {
TV_Direct =>
v,
TV_Vector =>
v,
_ => [
v with Mode =
o[
Mode]]
}
}
bitfield Mcause :
xlenbits = {
IsInterrupt :
xlen - 1,
Cause :
xlen - 2 ..
0
}
register mcause :
Mcause
mapping clause csr_name_map =
0x342 <->
"mcause"
function clause is_CSR_accessible(
0x342, _, _) =
true function clause read_CSR(
0x342) =
mcause.
bits
function clause write_CSR(
0x342,
value) = {
mcause.
bits =
value;
Ok(
mcause.
bits) }
function tvec_addr(
m :
Mtvec,
c :
Mcause) ->
option(
xlenbits) = {
let base :
xlenbits =
m[
Base] @
0b00;
match (
trapVectorMode_of_bits(
m[
Mode])) {
TV_Direct =>
Some(
base),
TV_Vector =>
if c[
IsInterrupt]
== 0b1
then Some(
base + (
zero_extend(
c[
Cause])
<< 2))
else Some(
base),
TV_Reserved =>
None()
}
}
register mepc :
xlenbits
function legalize_xepc(
v :
xlenbits) ->
xlenbits = {
if hartSupports(
Ext_Zca)
then [
v with 0 =
bitzero]
else [
v with 1..
0 =
zeros()]
}
function align_pc(
addr :
xlenbits) ->
xlenbits = {
if currentlyEnabled(
Ext_Zca)
then [
addr with 0 =
bitzero]
else [
addr with 1..
0 =
zeros()]
}
register mtval :
xlenbits
register mscratch :
xlenbits
mapping clause csr_name_map =
0x343 <->
"mtval"
mapping clause csr_name_map =
0x340 <->
"mscratch"
function clause is_CSR_accessible(
0x343, _, _) =
true function clause is_CSR_accessible(
0x340, _, _) =
true
function clause read_CSR(
0x343) =
mtval
function clause read_CSR(
0x340) =
mscratch
function clause write_CSR(
0x343,
value) = {
mtval =
value;
Ok(
mtval) }
function clause write_CSR(
0x340,
value) = {
mscratch =
value;
Ok(
mscratch) }
bitfield Counteren :
bits(
32) = {
HPM :
31 ..
3,
IR :
2,
TM :
1,
CY :
0
}
function legalize_scounteren(
c :
Counteren,
v :
xlenbits) ->
Counteren = {
let supported_counters =
sys_writable_hpm_counters[
31 ..
3] @
0b111;
Mk_Counteren(
v[
31 ..
0]
& supported_counters)
}
register scounteren :
Counteren
mapping clause csr_name_map =
0x106 <->
"scounteren"
function clause is_CSR_accessible(
0x106, _, _) =
currentlyEnabled(
Ext_S)
function clause read_CSR(
0x106) =
zero_extend(
scounteren.
bits)
function clause write_CSR(
0x106,
value) = {
scounteren =
legalize_scounteren(
scounteren,
value);
Ok(
zero_extend(
scounteren.
bits)) }
function legalize_mcounteren(
c :
Counteren,
v :
xlenbits) ->
Counteren = {
let supported_counters =
sys_writable_hpm_counters[
31 ..
3] @
0b111;
Mk_Counteren(
v[
31 ..
0]
& supported_counters)
}
register mcounteren :
Counteren
mapping clause csr_name_map =
0x306 <->
"mcounteren"
function clause is_CSR_accessible(
0x306, _, _) =
currentlyEnabled(
Ext_U)
function clause read_CSR(
0x306) =
zero_extend(
mcounteren.
bits)
function clause write_CSR(
0x306,
value) = {
mcounteren =
legalize_mcounteren(
mcounteren,
value);
Ok(
zero_extend(
mcounteren.
bits)) }
bitfield Counterin :
bits(
32) = {
HPM :
31 ..
3,
IR :
2,
CY :
0
}
function legalize_mcountinhibit(
c :
Counterin,
v :
xlenbits) ->
Counterin = {
let supported_counters =
sys_writable_hpm_counters[
31 ..
3] @
0b101;
Mk_Counterin(
v[
31 ..
0]
& supported_counters)
}
register mcountinhibit :
Counterin
mapping clause csr_name_map =
0x320 <->
"mcountinhibit"
function clause is_CSR_accessible(
0x320, _, _) =
true function clause read_CSR(
0x320) =
zero_extend(
mcountinhibit.
bits)
function clause write_CSR(
0x320,
value) = {
mcountinhibit =
legalize_mcountinhibit(
mcountinhibit,
value);
Ok(
zero_extend(
mcountinhibit.
bits)) }
register mcycle :
bits(
64)
register mtime :
bits(
64)
register minstret :
bits(
64)
register minstret_increment :
bool
register mvendorid :
bits(
32) =
to_bits_checked(
config platform.
vendorid :
int)
register mimpid :
xlenbits =
to_bits_checked(
config platform.
impid :
int)
register marchid :
xlenbits =
to_bits_checked(
config platform.
archid :
int)
register mhartid :
xlenbits =
to_bits_checked(
config platform.
hartid :
int)
register mconfigptr :
xlenbits =
zeros()
mapping clause csr_name_map =
0xF11 <->
"mvendorid"
mapping clause csr_name_map =
0xF12 <->
"marchid"
mapping clause csr_name_map =
0xF13 <->
"mimpid"
mapping clause csr_name_map =
0xF14 <->
"mhartid"
mapping clause csr_name_map =
0xF15 <->
"mconfigptr"
function clause is_CSR_accessible(
0xf11, _, _) =
true function clause is_CSR_accessible(
0xf12, _, _) =
true function clause is_CSR_accessible(
0xf13, _, _) =
true function clause is_CSR_accessible(
0xf14, _, _) =
true function clause is_CSR_accessible(
0xf15, _, _) =
true
function clause read_CSR(
0xF11) =
zero_extend(
mvendorid)
function clause read_CSR(
0xF12) =
marchid
function clause read_CSR(
0xF13) =
mimpid
function clause read_CSR(
0xF14) =
mhartid
function clause read_CSR(
0xF15) =
mconfigptr
bitfield Sstatus :
bits(
64) = {
SD :
xlen - 1,
UXL :
33 ..
32,
SPELP :
23,
MXR :
19,
SUM :
18,
XS :
16 ..
15,
FS :
14 ..
13,
VS :
10 ..
9,
SPP :
8,
SPIE :
5,
SIE :
1,
}
function lower_mstatus(
m :
Mstatus) ->
Sstatus = {
let s =
Mk_Sstatus(
zeros());
[
s with
SD =
m[
SD],
UXL =
m[
UXL],
SPELP =
m[
SPELP],
MXR =
m[
MXR],
SUM =
m[
SUM],
XS =
m[
XS],
FS =
m[
FS],
VS =
m[
VS],
SPP =
m[
SPP],
SPIE =
m[
SPIE],
SIE =
m[
SIE],
]
}
function lift_sstatus(
m :
Mstatus,
s :
Sstatus) ->
Mstatus = {
let dirty =
extStatus_of_bits(
s[
FS])
== Dirty | extStatus_of_bits(
s[
XS])
== Dirty |
extStatus_of_bits(
s[
VS])
== Dirty;
[
m with
SD =
bool_to_bits(
dirty),
UXL =
s[
UXL],
SPELP =
s[
SPELP],
MXR =
s[
MXR],
SUM =
s[
SUM],
XS =
s[
XS],
FS =
s[
FS],
VS =
s[
VS],
SPP =
s[
SPP],
SPIE =
s[
SPIE],
SIE =
s[
SIE],
]
}
function legalize_sstatus(
m :
Mstatus,
v :
xlenbits) ->
Mstatus = {
legalize_mstatus(
m,
lift_sstatus(
m,
Mk_Sstatus(
zero_extend(
v))).
bits)
}
mapping clause csr_name_map =
0x100 <->
"sstatus"
function clause is_CSR_accessible(
0x100, _, _) =
currentlyEnabled(
Ext_S)
function clause read_CSR(
0x100) =
lower_mstatus(
mstatus).
bits[
xlen - 1 ..
0]
function clause write_CSR(
0x100,
value) = {
mstatus =
legalize_sstatus(
mstatus,
value);
Ok(
lower_mstatus(
mstatus).
bits[
xlen - 1 ..
0]) }
bitfield Sinterrupts :
xlenbits = {
SEI :
9,
STI :
5,
SSI :
1, }
function lower_mip(
m :
Minterrupts,
d :
Minterrupts) ->
Sinterrupts = {
let s :
Sinterrupts =
Mk_Sinterrupts(
zeros());
[
s with
SEI =
m[
SEI]
& d[
SEI],
STI =
m[
STI]
& d[
STI],
SSI =
m[
SSI]
& d[
SSI],
]
}
function lower_mie(
m :
Minterrupts,
d :
Minterrupts) ->
Sinterrupts = {
let s :
Sinterrupts =
Mk_Sinterrupts(
zeros());
[
s with
SEI =
m[
SEI]
& d[
SEI],
STI =
m[
STI]
& d[
STI],
SSI =
m[
SSI]
& d[
SSI],
]
}
function lift_sip(
o :
Minterrupts,
d :
Minterrupts,
s :
Sinterrupts) ->
Minterrupts = {
let m :
Minterrupts =
o;
let m =
if d[
SSI]
== 0b1 then [
m with SSI =
s[
SSI]]
else m;
m
}
function legalize_sip(
m :
Minterrupts,
d :
Minterrupts,
v :
xlenbits) ->
Minterrupts = {
lift_sip(
m,
d,
Mk_Sinterrupts(
v))
}
mapping clause csr_name_map =
0x144 <->
"sip"
function clause is_CSR_accessible(
0x144, _, _) =
currentlyEnabled(
Ext_S)
function clause read_CSR(
0x144) =
lower_mip(
mip,
mideleg).
bits
function clause write_CSR(
0x144,
value) = {
mip =
legalize_sip(
mip,
mideleg,
value);
Ok(
lower_mip(
mip,
mideleg).
bits) }
function lift_sie(
o :
Minterrupts,
d :
Minterrupts,
s :
Sinterrupts) ->
Minterrupts = {
let m :
Minterrupts =
o;
[
m with
SEI =
if d[
SEI]
== 0b1 then s[
SEI]
else m[
SEI],
STI =
if d[
STI]
== 0b1 then s[
STI]
else m[
STI],
SSI =
if d[
SSI]
== 0b1 then s[
SSI]
else m[
SSI],
]
}
function legalize_sie(
m :
Minterrupts,
d :
Minterrupts,
v :
xlenbits) ->
Minterrupts = {
lift_sie(
m,
d,
Mk_Sinterrupts(
v))
}
mapping clause csr_name_map =
0x104 <->
"sie"
function clause is_CSR_accessible(
0x104, _, _) =
currentlyEnabled(
Ext_S)
function clause read_CSR(
0x104) =
lower_mie(
mie,
mideleg).
bits
function clause write_CSR(
0x104,
value) = {
mie =
legalize_sie(
mie,
mideleg,
value);
Ok(
lower_mie(
mie,
mideleg).
bits) }
register stvec :
Mtvec
register sscratch :
xlenbits
register sepc :
xlenbits
register scause :
Mcause
register stval :
xlenbits
mapping clause csr_name_map =
0x140 <->
"sscratch"
mapping clause csr_name_map =
0x142 <->
"scause"
mapping clause csr_name_map =
0x143 <->
"stval"
function clause is_CSR_accessible(
0x140, _, _) =
currentlyEnabled(
Ext_S)
function clause is_CSR_accessible(
0x142, _, _) =
currentlyEnabled(
Ext_S)
function clause is_CSR_accessible(
0x143, _, _) =
currentlyEnabled(
Ext_S)
function clause read_CSR(
0x140) =
sscratch
function clause read_CSR(
0x142) =
scause.
bits
function clause read_CSR(
0x143) =
stval
function clause write_CSR(
0x140,
value) = {
sscratch =
value;
Ok(
sscratch) }
function clause write_CSR(
0x142,
value) = {
scause.
bits =
value;
Ok(
scause.
bits) }
function clause write_CSR(
0x143,
value) = {
stval =
value;
Ok(
stval) }
bitfield Satp64 :
bits(
64) = {
Mode :
63 ..
60,
Asid :
59 ..
44,
PPN :
43 ..
0
}
bitfield Satp32 :
bits(
32) = {
Mode :
31,
Asid :
30 ..
22,
PPN :
21 ..
0
}
function legalize_satp(
arch :
Architecture,
prev_value :
xlenbits,
written_value :
xlenbits,
) ->
xlenbits = {
if xlen == 32 then {
let s =
Mk_Satp32(
written_value);
match satpMode_of_bits(
arch,
0b000 @
s[
Mode]) {
None() =>
prev_value,
Some(
Sv_mode) =>
match Sv_mode {
Bare if currentlyEnabled(
Ext_Svbare) =>
s.
bits,
Sv32 if currentlyEnabled(
Ext_Sv32) =>
s.
bits,
_ =>
prev_value,
}
}
}
else if xlen == 64 then {
let s =
Mk_Satp64(
written_value);
match satpMode_of_bits(
arch,
s[
Mode]) {
None() =>
prev_value,
Some(
Sv_mode) =>
match Sv_mode {
Bare if currentlyEnabled(
Ext_Svbare) =>
s.
bits,
Sv39 if currentlyEnabled(
Ext_Sv39) =>
s.
bits,
Sv48 if currentlyEnabled(
Ext_Sv48) =>
s.
bits,
Sv57 if currentlyEnabled(
Ext_Sv57) =>
s.
bits,
_ =>
prev_value,
}
}
}
else {
internal_error(
__FILE__,
__LINE__,
"Unsupported xlen" ^ dec_str(
xlen))
}
}
register tselect :
xlenbits
mapping clause csr_name_map =
0x7a0 <->
"tselect"
mapping clause csr_name_map =
0x7a1 <->
"tdata1"
mapping clause csr_name_map =
0x7a2 <->
"tdata2"
mapping clause csr_name_map =
0x7a3 <->
"tdata3"
function clause is_CSR_accessible(
0x7a0, _, _) =
true
function clause read_CSR(
0x7a0) =
~(
tselect)
function clause write_CSR(
0x7a0,
value) = {
tselect =
value;
Ok(
tselect) }
val get_16_random_bits =
impure {
interpreter:
"Platform.get_16_random_bits",
c:
"plat_get_16_random_bits",
lem:
"plat_get_16_random_bits"
} :
unit ->
bits(
16)
function feature_enabled_for_priv(
p :
Privilege,
machine_enable_bit :
bit,
supervisor_enable_bit :
bit) ->
bool =
match p {
Machine =>
true,
Supervisor =>
machine_enable_bit == bitone,
User =>
machine_enable_bit == bitone & (
not(
currentlyEnabled(
Ext_S))
| supervisor_enable_bit == bitone),
VirtualSupervisor =>
internal_error(
__FILE__,
__LINE__,
"Hypervisor extension not supported"),
VirtualUser =>
internal_error(
__FILE__,
__LINE__,
"Hypervisor extension not supported"),
}
function counter_enabled(
index:
range(
0,
31),
priv :
Privilege) ->
bool =
feature_enabled_for_priv(
priv,
mcounteren.
bits[
index],
scounteren.
bits[
index])