1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
// ======================================================================================= // This Sail RISC-V architecture model, comprising all files and // directories except where otherwise noted is subject the BSD // two-clause license in the LICENSE file. // // SPDX-License-Identifier: BSD-2-Clause // ======================================================================================= // program counter register PC : xlenbits register nextPC : xlenbits // Mappings for encoding mapping encdec_reg : regidx <-> bits(5) = { forwards Regidx(r) => zero_extend(r), backwards r if not(base_E_enabled) | r[4] == bitzero => Regidx(r[regidx_bit_width - 1 .. 0]), } mapping encdec_creg : cregidx <-> bits(3) = { Cregidx(r) <-> r } // mappings for assembly mapping reg_abi_name_raw : bits(5) <-> string = { 0b00000 <-> "zero", 0b00001 <-> "ra", 0b00010 <-> "sp", 0b00011 <-> "gp", 0b00100 <-> "tp", 0b00101 <-> "t0", 0b00110 <-> "t1", 0b00111 <-> "t2", 0b01000 <-> "s0", 0b01000 <-> "fp", 0b01001 <-> "s1", 0b01010 <-> "a0", 0b01011 <-> "a1", 0b01100 <-> "a2", 0b01101 <-> "a3", 0b01110 <-> "a4", 0b01111 <-> "a5", 0b10000 <-> "a6", 0b10001 <-> "a7", 0b10010 <-> "s2", 0b10011 <-> "s3", 0b10100 <-> "s4", 0b10101 <-> "s5", 0b10110 <-> "s6", 0b10111 <-> "s7", 0b11000 <-> "s8", 0b11001 <-> "s9", 0b11010 <-> "s10", 0b11011 <-> "s11", 0b11100 <-> "t3", 0b11101 <-> "t4", 0b11110 <-> "t5", 0b11111 <-> "t6", } mapping reg_arch_name_raw : bits(5) <-> string = { 0b00000 <-> "x0", 0b00001 <-> "x1", 0b00010 <-> "x2", 0b00011 <-> "x3", 0b00100 <-> "x4", 0b00101 <-> "x5", 0b00110 <-> "x6", 0b00111 <-> "x7", 0b01000 <-> "x8", 0b01001 <-> "x9", 0b01010 <-> "x10", 0b01011 <-> "x11", 0b01100 <-> "x12", 0b01101 <-> "x13", 0b01110 <-> "x14", 0b01111 <-> "x15", 0b10000 <-> "x16", 0b10001 <-> "x17", 0b10010 <-> "x18", 0b10011 <-> "x19", 0b10100 <-> "x20", 0b10101 <-> "x21", 0b10110 <-> "x22", 0b10111 <-> "x23", 0b11000 <-> "x24", 0b11001 <-> "x25", 0b11010 <-> "x26", 0b11011 <-> "x27", 0b11100 <-> "x28", 0b11101 <-> "x29", 0b11110 <-> "x30", 0b11111 <-> "x31", } // Mapping from 4/5 back to 5 bits here makes the name mapping much easier. // If you call `reg_name("t6")` on an E hart you'll get a mapping failure. mapping reg_name : regidx <-> string = { encdec_reg(i) if get_config_use_abi_names() <-> reg_abi_name_raw(i), encdec_reg(i) if not(get_config_use_abi_names()) <-> reg_arch_name_raw(i), } // Special mapping for the sp register for use in assembly for sp-relative // instructions where the argument *must* be `sp` (or `x2`). mapping sp_reg_name : unit <-> string = { () if get_config_use_abi_names() <-> "sp", () if not(get_config_use_abi_names()) <-> "x2", } mapping creg_name : cregidx <-> string = { Cregidx(i) <-> reg_name(encdec_reg(0b01 @ i)) } function xreg_write_callback(reg : regidx, value : xlenbits) -> unit = { let name = reg_name(reg); xreg_full_write_callback(name, reg, value); } // register file and accessors register x1 : regtype register x2 : regtype register x3 : regtype register x4 : regtype register x5 : regtype register x6 : regtype register x7 : regtype register x8 : regtype register x9 : regtype register x10 : regtype register x11 : regtype register x12 : regtype register x13 : regtype register x14 : regtype register x15 : regtype register x16 : regtype register x17 : regtype register x18 : regtype register x19 : regtype register x20 : regtype register x21 : regtype register x22 : regtype register x23 : regtype register x24 : regtype register x25 : regtype register x26 : regtype register x27 : regtype register x28 : regtype register x29 : regtype register x30 : regtype register x31 : regtype function rX (Regno(r) : regno) -> xlenbits = { let v : regtype = match r { 0 => zero_reg, 1 => x1, 2 => x2, 3 => x3, 4 => x4, 5 => x5, 6 => x6, 7 => x7, 8 => x8, 9 => x9, 10 => x10, 11 => x11, 12 => x12, 13 => x13, 14 => x14, 15 => x15, 16 => x16, 17 => x17, 18 => x18, 19 => x19, 20 => x20, 21 => x21, 22 => x22, 23 => x23, 24 => x24, 25 => x25, 26 => x26, 27 => x27, 28 => x28, 29 => x29, 30 => x30, 31 => x31, }; regval_from_reg(v) } function wX (Regno(r) : regno, in_v : xlenbits) -> unit = { let v = regval_into_reg(in_v); match r { 0 => (), 1 => x1 = v, 2 => x2 = v, 3 => x3 = v, 4 => x4 = v, 5 => x5 = v, 6 => x6 = v, 7 => x7 = v, 8 => x8 = v, 9 => x9 = v, 10 => x10 = v, 11 => x11 = v, 12 => x12 = v, 13 => x13 = v, 14 => x14 = v, 15 => x15 = v, 16 => x16 = v, 17 => x17 = v, 18 => x18 = v, 19 => x19 = v, 20 => x20 = v, 21 => x21 = v, 22 => x22 = v, 23 => x23 = v, 24 => x24 = v, 25 => x25 = v, 26 => x26 = v, 27 => x27 = v, 28 => x28 = v, 29 => x29 = v, 30 => x30 = v, 31 => x31 = v, }; if r != 0 then xreg_write_callback(Regidx(to_bits(r)), in_v) } function rX_bits(Regidx(i) : regidx) -> xlenbits = rX(Regno(unsigned(i))) function wX_bits(Regidx(i) : regidx, data : xlenbits) -> unit = { wX(Regno(unsigned(i))) = data } overload X = {rX_bits, wX_bits, rX, wX} // X_pair accesses a pair of registers. If the index is x0 then // it acts as if both registers in the pair are x0. function rX_pair_bits(i : regidx) -> bits(xlen * 2) = if i != zreg then X(i + 1) @ X(i) else zeros() function wX_pair_bits(i : regidx, data : bits(xlen * 2)) -> unit = if i != zreg then { X(i) = data[xlen - 1 .. 0]; X(i + 1) = data[xlen * 2 - 1 .. xlen]; } overload X_pair = {rX_pair_bits, wX_pair_bits}