1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
type half =
bits(
16)
type word =
bits(
32)
type instbits =
bits(
32)
type pagesize_bits :
Int =
12
let pagesize_bits =
sizeof(
pagesize_bits)
type base_E_enabled :
Bool =
config base.
E
let base_E_enabled =
constraint(
base_E_enabled)
type regidx_bit_width =
if base_E_enabled then 4 else 5
let regidx_bit_width =
sizeof(
regidx_bit_width)
newtype regidx =
Regidx :
bits(
regidx_bit_width)
newtype cregidx =
Cregidx :
bits(
3)
type csreg =
bits(
12)
function regidx_offset(
Regidx(
r) :
regidx,
o :
bits(
regidx_bit_width)) ->
regidx =
Regidx(
r + o)
function regidx_offset_range(
Regidx(
r) :
regidx,
o :
range(
0,
31)) ->
regidx =
Regidx(
r + o)
function regidx_bits(
Regidx(
b) :
regidx) ->
bits(
regidx_bit_width) =
b
overload operator + = {
regidx_offset,
regidx_offset_range }
newtype regno =
Regno :
range(
0, 2 ^
regidx_bit_width - 1)
function creg2reg_idx(
Cregidx(
i) :
cregidx) ->
regidx =
Regidx(
zero_extend(
0b1 @
i))
let zreg :
regidx =
Regidx(
zero_extend(
0b00))
let ra :
regidx =
Regidx(
zero_extend(
0b01))
let sp :
regidx =
Regidx(
zero_extend(
0b10))
enum Architecture = {
RV32,
RV64,
RV128}
type arch_xlen =
bits(
2)
mapping architecture_bits :
Architecture <->
arch_xlen = {
RV32 <->
0b01,
RV64 <->
0b10,
RV128 <->
0b11,
backwards 0b00 =>
internal_error(
__FILE__,
__LINE__,
"architecture(0b00) is invalid")
}
type nom_priv_bits =
bits(
2)
type virt_mode_bit =
bit
enum Privilege = {
User,
VirtualUser,
Supervisor,
VirtualSupervisor,
Machine}
mapping privLevel_bits : (
nom_priv_bits,
virt_mode_bit) <->
Privilege = {
(
0b00,
bitzero) <->
User,
(
0b00,
bitone ) <->
VirtualUser,
(
0b01,
bitzero) <->
Supervisor,
(
0b01,
bitone ) <->
VirtualSupervisor,
(
0b11,
bitzero) <->
Machine,
forwards _ =>
internal_error(
__FILE__,
__LINE__,
"Invalid privilege level or virtual mode"),
}
function privLevel_to_bits(
p :
Privilege) ->
nom_priv_bits = {
let (
p, _) =
privLevel_bits(
p);
p }
function privLevel_to_str (
p :
Privilege) ->
string =
match (
p) {
User =>
"U",
VirtualUser =>
"VU",
Supervisor =>
if currentlyEnabled(
Ext_H)
then "HS" else "S",
VirtualSupervisor =>
"VS",
Machine =>
"M"
}
overload to_str = {
privLevel_to_str}
union AccessType (
'a :
Type) = {
Read :
'a,
Write :
'a,
ReadWrite : (
'a,
'a),
InstructionFetch :
unit
}
function is_load_store forall (
'a :
Type) . (
ac :
AccessType(
'a)) ->
bool =
match ac {
Read(_) =>
true,
Write(_) =>
true,
ReadWrite(_) =>
true,
InstructionFetch(_) =>
false,
}
type is_mem_width(
'w) =
'w in {
1,
2,
4,
8}
enum InterruptType = {
I_U_Software,
I_S_Software,
I_M_Software,
I_U_Timer,
I_S_Timer,
I_M_Timer,
I_U_External,
I_S_External,
I_M_External
}
mapping interruptType_bits :
InterruptType <->
exc_code = {
I_U_Software <->
0b000000,
I_S_Software <->
0b000001,
I_M_Software <->
0b000011,
I_U_Timer <->
0b000100,
I_S_Timer <->
0b000101,
I_M_Timer <->
0b000111,
I_U_External <->
0b001000,
I_S_External <->
0b001001,
I_M_External <->
0b001011, }
union ExceptionType = {
E_Fetch_Addr_Align :
unit,
E_Fetch_Access_Fault :
unit,
E_Illegal_Instr :
unit,
E_Breakpoint :
unit,
E_Load_Addr_Align :
unit,
E_Load_Access_Fault :
unit,
E_SAMO_Addr_Align :
unit,
E_SAMO_Access_Fault :
unit,
E_U_EnvCall :
unit,
E_S_EnvCall :
unit,
E_Reserved_10 :
unit,
E_M_EnvCall :
unit,
E_Fetch_Page_Fault :
unit,
E_Load_Page_Fault :
unit,
E_Reserved_14 :
unit,
E_SAMO_Page_Fault :
unit,
E_Reserved_16 :
unit,
E_Reserved_17 :
unit,
E_Software_Check :
unit,
E_Extension :
ext_exc_type
}
mapping exceptionType_bits :
ExceptionType <->
exc_code = {
E_Fetch_Addr_Align() <->
0b000000,
E_Fetch_Access_Fault() <->
0b000001,
E_Illegal_Instr() <->
0b000010,
E_Breakpoint() <->
0b000011,
E_Load_Addr_Align() <->
0b000100,
E_Load_Access_Fault() <->
0b000101,
E_SAMO_Addr_Align() <->
0b000110,
E_SAMO_Access_Fault() <->
0b000111,
E_U_EnvCall() <->
0b001000,
E_S_EnvCall() <->
0b001001,
E_Reserved_10() <->
0b001010,
E_M_EnvCall() <->
0b001011,
E_Fetch_Page_Fault() <->
0b001100,
E_Load_Page_Fault() <->
0b001101,
E_Reserved_14() <->
0b001110,
E_SAMO_Page_Fault() <->
0b001111,
E_Reserved_16() <->
0b010000,
E_Reserved_17() <->
0b010001,
E_Software_Check() <->
0b010010,
E_Extension(
e) <->
ext_exc_type_bits(
e)
}
val exceptionType_to_str :
ExceptionType ->
string
function exceptionType_to_str(
e) =
match (
e) {
E_Fetch_Addr_Align() =>
"misaligned-fetch",
E_Fetch_Access_Fault() =>
"fetch-access-fault",
E_Illegal_Instr() =>
"illegal-instruction",
E_Breakpoint() =>
"breakpoint",
E_Load_Addr_Align() =>
"misaligned-load",
E_Load_Access_Fault() =>
"load-access-fault",
E_SAMO_Addr_Align() =>
"misaligned-store/amo",
E_SAMO_Access_Fault() =>
"store/amo-access-fault",
E_U_EnvCall() =>
"u-call",
E_S_EnvCall() =>
"s-call",
E_Reserved_10() =>
"reserved-0",
E_M_EnvCall() =>
"m-call",
E_Fetch_Page_Fault() =>
"fetch-page-fault",
E_Load_Page_Fault() =>
"load-page-fault",
E_Reserved_14() =>
"reserved-1",
E_SAMO_Page_Fault() =>
"store/amo-page-fault",
E_Reserved_16() =>
"reserved-2",
E_Reserved_17() =>
"reserved-3",
E_Software_Check() =>
"software-check-fault",
E_Extension(
e) =>
ext_exc_type_to_str(
e)
}
overload to_str = {
exceptionType_to_str}
enum SWCheckCodes = {
LANDING_PAD_FAULT}
function sw_check_code_to_bits (
c :
SWCheckCodes) ->
xlenbits =
match (
c) {
LANDING_PAD_FAULT =>
zero_extend(
0b010),
}
type tv_mode =
bits(
2)
enum TrapVectorMode = {
TV_Direct,
TV_Vector,
TV_Reserved}
val trapVectorMode_of_bits :
tv_mode ->
TrapVectorMode
function trapVectorMode_of_bits (
m) =
match (
m) {
0b00 =>
TV_Direct,
0b01 =>
TV_Vector,
_ =>
TV_Reserved
}
enum xRET_type = {
mRET,
sRET}
type ext_status =
bits(
2)
enum ExtStatus = {
Off,
Initial,
Clean,
Dirty}
mapping extStatus_bits :
ExtStatus <->
ext_status = {
Off <->
0b00,
Initial <->
0b01,
Clean <->
0b10,
Dirty <->
0b11
}
function extStatus_to_bits(
e :
ExtStatus) ->
ext_status =
extStatus_bits(
e)
function extStatus_of_bits(
b :
ext_status) ->
ExtStatus =
extStatus_bits(
b)
type satp_mode =
bits(
4)
enum SATPMode = {
Bare,
Sv32,
Sv39,
Sv48,
Sv57}
function satpMode_of_bits(
a :
Architecture,
m :
satp_mode) ->
option(
SATPMode) =
match (
a,
m) {
(_,
0x0) =>
Some(
Bare),
(
RV32,
0x1) =>
Some(
Sv32),
(
RV64,
0x8) =>
Some(
Sv39),
(
RV64,
0x9) =>
Some(
Sv48),
(
RV64,
0xA) =>
Some(
Sv57),
(_, _) =>
None()
}
type csrRW =
bits(
2)
enum WaitReason = {
WAIT_WFI,
WAIT_WRS_STO,
WAIT_WRS_NTO}
mapping wait_name :
WaitReason <->
string = {
WAIT_WFI <->
"WAIT-WFI",
WAIT_WRS_STO <->
"WAIT-WRS-STO",
WAIT_WRS_NTO <->
"WAIT-WRS-NTO",
}
overload to_str = {
wait_name}
type word_width = {
1,
2,
4,
8}
type word_width_wide = {
1,
2,
4,
8,
16}
mapping width_enc :
word_width <->
bits(
2) = {
1 <->
0b00,
2 <->
0b01,
4 <->
0b10,
8 <->
0b11,
}
mapping width_mnemonic :
word_width <->
string = {
1 <->
"b",
2 <->
"h",
4 <->
"w",
8 <->
"d",
}
mapping width_enc_wide :
word_width_wide <->
bits(
3) = {
1 <->
0b000,
2 <->
0b001,
4 <->
0b010,
8 <->
0b011,
16 <->
0b100,
}
mapping width_mnemonic_wide :
word_width_wide <->
string = {
1 <->
"b",
2 <->
"h",
4 <->
"w",
8 <->
"d",
16 <->
"q",
}