1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
// ======================================================================================= // This Sail RISC-V architecture model, comprising all files and // directories except where otherwise noted is subject the BSD // two-clause license in the LICENSE file. // // SPDX-License-Identifier: BSD-2-Clause // ======================================================================================= // Platform configuration // How many PMP entries are implemented. This must be 0, 16 or 64 (this is checked at runtime). let sys_pmp_count : {0, 16, 64} = config memory.pmp.count // G parameter that specifies the PMP grain size. The grain size is 2^(G+2), e.g. // G=0 -> 4 bytes, G=10 -> 4096 bytes. let sys_pmp_grain : range(0, 63) = config memory.pmp.grain // PMP configuration entries enum PmpAddrMatchType = {OFF, TOR, NA4, NAPOT} mapping pmpAddrMatchType_encdec : PmpAddrMatchType <-> bits(2) = { OFF <-> 0b00, TOR <-> 0b01, NA4 <-> 0b10, NAPOT <-> 0b11, } bitfield Pmpcfg_ent : bits(8) = { L : 7, // locking A : 4 .. 3, // address match type, encoded as above // permissions X : 2, // execute W : 1, // write R : 0 // read } register pmpcfg_n : vector(64, Pmpcfg_ent) register pmpaddr_n : vector(64, xlenbits) // Packing and unpacking pmpcfg regs for xlen-width accesses function pmpReadCfgReg(n : range(0, 15)) -> xlenbits = { if xlen == 32 then { pmpcfg_n[n*4 + 3].bits @ pmpcfg_n[n*4 + 2].bits @ pmpcfg_n[n*4 + 1].bits @ pmpcfg_n[n*4 + 0].bits } else { assert(n % 2 == 0, "Unexpected pmp config reg read"); pmpcfg_n[n*4 + 7].bits @ pmpcfg_n[n*4 + 6].bits @ pmpcfg_n[n*4 + 5].bits @ pmpcfg_n[n*4 + 4].bits @ pmpcfg_n[n*4 + 3].bits @ pmpcfg_n[n*4 + 2].bits @ pmpcfg_n[n*4 + 1].bits @ pmpcfg_n[n*4 + 0].bits } } function pmpReadAddrReg(n : range(0, 63)) -> xlenbits = { let G = sys_pmp_grain; let match_type = pmpcfg_n[n][A]; let addr = pmpaddr_n[n]; match match_type[1] { bitone if G >= 2 => { // [G-2..0] read as all ones to form mask, therefore we need G-1 bits. let mask : xlenbits = zero_extend(ones(min(G - 1, xlen))); addr | mask }, bitzero if G >= 1 => { // [G-1..0] read as all zeros to form mask, therefore we need G bits. let mask : xlenbits = zero_extend(ones(min(G , xlen))); addr & ~(mask) }, _ => addr, } } // Helpers to handle locked entries function pmpLocked(cfg: Pmpcfg_ent) -> bool = cfg[L] == 0b1 function pmpTORLocked(cfg: Pmpcfg_ent) -> bool = (cfg[L] == 0b1) & (pmpAddrMatchType_encdec(cfg[A]) == TOR) function pmpWriteCfg(n: range(0, 63), cfg: Pmpcfg_ent, v: bits(8)) -> Pmpcfg_ent = if pmpLocked(cfg) then cfg else { // Bits 5 and 6 are zero. let cfg = Mk_Pmpcfg_ent(v & 0x9f); // "The R, W, and X fields form a collective WARL field for which the combinations with R=0 and W=1 are reserved." // In this implementation if R=0 and W=1 then R, W and X are all set to 0. // This is the least risky option from a security perspective. let cfg = if cfg[W] == 0b1 & cfg[R] == 0b0 then [cfg with X = 0b0, W = 0b0, R = 0b0] else cfg; // We support disabling all modes globally, which is allowed since this // is a WARL field. let mode_supported : bool = match pmpAddrMatchType_encdec(cfg[A]) { OFF => true, TOR => config memory.pmp.tor_supported, // "When G >= 1, the NA4 mode is not selectable." NA4 => (config memory.pmp.na4_supported : bool) & sys_pmp_grain == 0, NAPOT => config memory.pmp.napot_supported, }; // In this implementation we set the mode to OFF if an unsupported mode is selected. // This is the least risky option from a security perspective. let cfg = if mode_supported then cfg else [cfg with A = pmpAddrMatchType_encdec(OFF)]; cfg } function pmpWriteCfgReg(n : range(0, 15), v : xlenbits) -> unit = { if xlen == 32 then { foreach (i from 0 to 3) { let idx = n*4 + i; pmpcfg_n[idx] = pmpWriteCfg(idx, pmpcfg_n[idx], v[8*i+7 .. 8*i]); } } else { assert(n % 2 == 0, "Unexpected pmp config reg write"); foreach (i from 0 to 7) { let idx = n*4 + i; pmpcfg_n[idx] = pmpWriteCfg(idx, pmpcfg_n[idx], v[8*i+7 .. 8*i]); } } } function pmpWriteAddr(locked: bool, tor_locked: bool, reg: xlenbits, v: xlenbits) -> xlenbits = if xlen == 32 then { if (locked | tor_locked) then reg else v } else { if (locked | tor_locked) then reg else zero_extend(v[53..0]) } function pmpWriteAddrReg(n : range(0, 63), v : xlenbits) -> unit = { pmpaddr_n[n] = pmpWriteAddr( pmpLocked(pmpcfg_n[n]), if n + 1 < 64 then pmpTORLocked(pmpcfg_n[n + 1]) else false, pmpaddr_n[n], v, ); } // PMP CSRs mapping clause csr_name_map = 0x3A0 <-> "pmpcfg0" mapping clause csr_name_map = 0x3A1 <-> "pmpcfg1" mapping clause csr_name_map = 0x3A2 <-> "pmpcfg2" mapping clause csr_name_map = 0x3A3 <-> "pmpcfg3" mapping clause csr_name_map = 0x3A4 <-> "pmpcfg4" mapping clause csr_name_map = 0x3A5 <-> "pmpcfg5" mapping clause csr_name_map = 0x3A6 <-> "pmpcfg6" mapping clause csr_name_map = 0x3A7 <-> "pmpcfg7" mapping clause csr_name_map = 0x3A8 <-> "pmpcfg8" mapping clause csr_name_map = 0x3A9 <-> "pmpcfg9" mapping clause csr_name_map = 0x3AA <-> "pmpcfg10" mapping clause csr_name_map = 0x3AB <-> "pmpcfg11" mapping clause csr_name_map = 0x3AC <-> "pmpcfg12" mapping clause csr_name_map = 0x3AD <-> "pmpcfg13" mapping clause csr_name_map = 0x3AE <-> "pmpcfg14" mapping clause csr_name_map = 0x3AF <-> "pmpcfg15" mapping clause csr_name_map = 0x3B0 <-> "pmpaddr0" mapping clause csr_name_map = 0x3B1 <-> "pmpaddr1" mapping clause csr_name_map = 0x3B2 <-> "pmpaddr2" mapping clause csr_name_map = 0x3B3 <-> "pmpaddr3" mapping clause csr_name_map = 0x3B4 <-> "pmpaddr4" mapping clause csr_name_map = 0x3B5 <-> "pmpaddr5" mapping clause csr_name_map = 0x3B6 <-> "pmpaddr6" mapping clause csr_name_map = 0x3B7 <-> "pmpaddr7" mapping clause csr_name_map = 0x3B8 <-> "pmpaddr8" mapping clause csr_name_map = 0x3B9 <-> "pmpaddr9" mapping clause csr_name_map = 0x3BA <-> "pmpaddr10" mapping clause csr_name_map = 0x3BB <-> "pmpaddr11" mapping clause csr_name_map = 0x3BC <-> "pmpaddr12" mapping clause csr_name_map = 0x3BD <-> "pmpaddr13" mapping clause csr_name_map = 0x3BE <-> "pmpaddr14" mapping clause csr_name_map = 0x3BF <-> "pmpaddr15" mapping clause csr_name_map = 0x3C0 <-> "pmpaddr16" mapping clause csr_name_map = 0x3C1 <-> "pmpaddr17" mapping clause csr_name_map = 0x3C2 <-> "pmpaddr18" mapping clause csr_name_map = 0x3C3 <-> "pmpaddr19" mapping clause csr_name_map = 0x3C4 <-> "pmpaddr20" mapping clause csr_name_map = 0x3C5 <-> "pmpaddr21" mapping clause csr_name_map = 0x3C6 <-> "pmpaddr22" mapping clause csr_name_map = 0x3C7 <-> "pmpaddr23" mapping clause csr_name_map = 0x3C8 <-> "pmpaddr24" mapping clause csr_name_map = 0x3C9 <-> "pmpaddr25" mapping clause csr_name_map = 0x3CA <-> "pmpaddr26" mapping clause csr_name_map = 0x3CB <-> "pmpaddr27" mapping clause csr_name_map = 0x3CC <-> "pmpaddr28" mapping clause csr_name_map = 0x3CD <-> "pmpaddr29" mapping clause csr_name_map = 0x3CE <-> "pmpaddr30" mapping clause csr_name_map = 0x3CF <-> "pmpaddr31" mapping clause csr_name_map = 0x3D0 <-> "pmpaddr32" mapping clause csr_name_map = 0x3D1 <-> "pmpaddr33" mapping clause csr_name_map = 0x3D2 <-> "pmpaddr34" mapping clause csr_name_map = 0x3D3 <-> "pmpaddr35" mapping clause csr_name_map = 0x3D4 <-> "pmpaddr36" mapping clause csr_name_map = 0x3D5 <-> "pmpaddr37" mapping clause csr_name_map = 0x3D6 <-> "pmpaddr38" mapping clause csr_name_map = 0x3D7 <-> "pmpaddr39" mapping clause csr_name_map = 0x3D8 <-> "pmpaddr40" mapping clause csr_name_map = 0x3D9 <-> "pmpaddr41" mapping clause csr_name_map = 0x3DA <-> "pmpaddr42" mapping clause csr_name_map = 0x3DB <-> "pmpaddr43" mapping clause csr_name_map = 0x3DC <-> "pmpaddr44" mapping clause csr_name_map = 0x3DD <-> "pmpaddr45" mapping clause csr_name_map = 0x3DE <-> "pmpaddr46" mapping clause csr_name_map = 0x3DF <-> "pmpaddr47" mapping clause csr_name_map = 0x3E0 <-> "pmpaddr48" mapping clause csr_name_map = 0x3E1 <-> "pmpaddr49" mapping clause csr_name_map = 0x3E2 <-> "pmpaddr50" mapping clause csr_name_map = 0x3E3 <-> "pmpaddr51" mapping clause csr_name_map = 0x3E4 <-> "pmpaddr52" mapping clause csr_name_map = 0x3E5 <-> "pmpaddr53" mapping clause csr_name_map = 0x3E6 <-> "pmpaddr54" mapping clause csr_name_map = 0x3E7 <-> "pmpaddr55" mapping clause csr_name_map = 0x3E8 <-> "pmpaddr56" mapping clause csr_name_map = 0x3E9 <-> "pmpaddr57" mapping clause csr_name_map = 0x3EA <-> "pmpaddr58" mapping clause csr_name_map = 0x3EB <-> "pmpaddr59" mapping clause csr_name_map = 0x3EC <-> "pmpaddr60" mapping clause csr_name_map = 0x3ED <-> "pmpaddr61" mapping clause csr_name_map = 0x3EE <-> "pmpaddr62" mapping clause csr_name_map = 0x3EF <-> "pmpaddr63" // pmpcfgN function clause is_CSR_accessible(0x3A @ idx : bits(4), _, _) = sys_pmp_count > 4 * unsigned(idx) & (idx[0] == bitzero | xlen == 32) function clause read_CSR(0x3A @ idx : bits(4) if idx[0] == bitzero | xlen == 32) = pmpReadCfgReg(unsigned(idx)) function clause write_CSR((0x3A @ idx : bits(4), value) if idx[0] == bitzero | xlen == 32) = { let idx = unsigned(idx); pmpWriteCfgReg(idx, value); Ok(pmpReadCfgReg(idx)) } // pmpaddrN. Unfortunately the PMP index does not nicely align with the CSR index bits. function clause is_CSR_accessible(0x3B @ idx : bits(4), _, _) = sys_pmp_count > unsigned(0b00 @ idx) function clause is_CSR_accessible(0x3C @ idx : bits(4), _, _) = sys_pmp_count > unsigned(0b01 @ idx) function clause is_CSR_accessible(0x3D @ idx : bits(4), _, _) = sys_pmp_count > unsigned(0b10 @ idx) function clause is_CSR_accessible(0x3E @ idx : bits(4), _, _) = sys_pmp_count > unsigned(0b11 @ idx) function clause read_CSR(0x3B @ idx : bits(4)) = pmpReadAddrReg(unsigned(0b00 @ idx)) function clause read_CSR(0x3C @ idx : bits(4)) = pmpReadAddrReg(unsigned(0b01 @ idx)) function clause read_CSR(0x3D @ idx : bits(4)) = pmpReadAddrReg(unsigned(0b10 @ idx)) function clause read_CSR(0x3E @ idx : bits(4)) = pmpReadAddrReg(unsigned(0b11 @ idx)) function clause write_CSR(0x3B @ idx : bits(4), value) = { let idx = unsigned(0b00 @ idx); pmpWriteAddrReg(idx, value); Ok(pmpReadAddrReg(idx)) } function clause write_CSR(0x3C @ idx : bits(4), value) = { let idx = unsigned(0b01 @ idx); pmpWriteAddrReg(idx, value); Ok(pmpReadAddrReg(idx)) } function clause write_CSR(0x3D @ idx : bits(4), value) = { let idx = unsigned(0b10 @ idx); pmpWriteAddrReg(idx, value); Ok(pmpReadAddrReg(idx)) } function clause write_CSR(0x3E @ idx : bits(4), value) = { let idx = unsigned(0b11 @ idx); pmpWriteAddrReg(idx, value); Ok(pmpReadAddrReg(idx)) }