1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
// ======================================================================================= // This Sail RISC-V architecture model, comprising all files and // directories except where otherwise noted is subject the BSD // two-clause license in the LICENSE file. // // SPDX-License-Identifier: BSD-2-Clause // ======================================================================================= newtype vregidx = Vregidx : bits(5) newtype vregno = Vregno : range(0, 31) function vregidx_to_vregno (Vregidx(b) : vregidx) -> vregno = Vregno(unsigned(b)) function vregno_to_vregidx (Vregno(b) : vregno) -> vregidx = Vregidx(to_bits(5, b)) function vregidx_offset(Vregidx(r) : vregidx, o : bits(5)) -> vregidx = Vregidx(r + o) function vregidx_offset_range(Vregidx(r) : vregidx, o : range(0, 31)) -> vregidx = Vregidx(r + o) overload operator + = { vregidx_offset, vregidx_offset_range } function vregidx_bits (Vregidx(b) : vregidx) -> bits(5) = b mapping encdec_vreg : vregidx <-> bits(5) = { Vregidx(r) <-> r } val vreg_write_callback = pure {c: "vreg_write_callback"} : (vregidx, vlenbits) -> unit function vreg_write_callback(_) = () let zvreg : vregidx = Vregidx(0b00000) // v0, zero register // vector registers register vr0 : vlenbits register vr1 : vlenbits register vr2 : vlenbits register vr3 : vlenbits register vr4 : vlenbits register vr5 : vlenbits register vr6 : vlenbits register vr7 : vlenbits register vr8 : vlenbits register vr9 : vlenbits register vr10 : vlenbits register vr11 : vlenbits register vr12 : vlenbits register vr13 : vlenbits register vr14 : vlenbits register vr15 : vlenbits register vr16 : vlenbits register vr17 : vlenbits register vr18 : vlenbits register vr19 : vlenbits register vr20 : vlenbits register vr21 : vlenbits register vr22 : vlenbits register vr23 : vlenbits register vr24 : vlenbits register vr25 : vlenbits register vr26 : vlenbits register vr27 : vlenbits register vr28 : vlenbits register vr29 : vlenbits register vr30 : vlenbits register vr31 : vlenbits mapping vreg_name_raw : bits(5) <-> string = { 0b00000 <-> "v0", 0b00001 <-> "v1", 0b00010 <-> "v2", 0b00011 <-> "v3", 0b00100 <-> "v4", 0b00101 <-> "v5", 0b00110 <-> "v6", 0b00111 <-> "v7", 0b01000 <-> "v8", 0b01001 <-> "v9", 0b01010 <-> "v10", 0b01011 <-> "v11", 0b01100 <-> "v12", 0b01101 <-> "v13", 0b01110 <-> "v14", 0b01111 <-> "v15", 0b10000 <-> "v16", 0b10001 <-> "v17", 0b10010 <-> "v18", 0b10011 <-> "v19", 0b10100 <-> "v20", 0b10101 <-> "v21", 0b10110 <-> "v22", 0b10111 <-> "v23", 0b11000 <-> "v24", 0b11001 <-> "v25", 0b11010 <-> "v26", 0b11011 <-> "v27", 0b11100 <-> "v28", 0b11101 <-> "v29", 0b11110 <-> "v30", 0b11111 <-> "v31" } mapping vreg_name : vregidx <-> string = { Vregidx(i) <-> vreg_name_raw(i) } function rV (Vregno(r) : vregno) -> vlenbits = { match r { 0 => vr0, 1 => vr1, 2 => vr2, 3 => vr3, 4 => vr4, 5 => vr5, 6 => vr6, 7 => vr7, 8 => vr8, 9 => vr9, 10 => vr10, 11 => vr11, 12 => vr12, 13 => vr13, 14 => vr14, 15 => vr15, 16 => vr16, 17 => vr17, 18 => vr18, 19 => vr19, 20 => vr20, 21 => vr21, 22 => vr22, 23 => vr23, 24 => vr24, 25 => vr25, 26 => vr26, 27 => vr27, 28 => vr28, 29 => vr29, 30 => vr30, 31 => vr31, } } function dirty_v_context() -> unit = { assert(hartSupports(Ext_V)); mstatus[VS] = extStatus_to_bits(Dirty); mstatus[SD] = 0b1; long_csr_write_callback("mstatus", "mstatush", mstatus.bits); } function wV (Vregno(r) : vregno, v : vlenbits) -> unit = { match r { 0 => vr0 = v, 1 => vr1 = v, 2 => vr2 = v, 3 => vr3 = v, 4 => vr4 = v, 5 => vr5 = v, 6 => vr6 = v, 7 => vr7 = v, 8 => vr8 = v, 9 => vr9 = v, 10 => vr10 = v, 11 => vr11 = v, 12 => vr12 = v, 13 => vr13 = v, 14 => vr14 = v, 15 => vr15 = v, 16 => vr16 = v, 17 => vr17 = v, 18 => vr18 = v, 19 => vr19 = v, 20 => vr20 = v, 21 => vr21 = v, 22 => vr22 = v, 23 => vr23 = v, 24 => vr24 = v, 25 => vr25 = v, 26 => vr26 = v, 27 => vr27 = v, 28 => vr28 = v, 29 => vr29 = v, 30 => vr30 = v, 31 => vr31 = v, }; dirty_v_context(); vreg_write_callback(vregno_to_vregidx(Vregno(r)), v); } function rV_bits(i: vregidx) -> vlenbits = rV(vregidx_to_vregno(i)) function wV_bits(i: vregidx, data: vlenbits) -> unit = { wV(vregidx_to_vregno(i)) = data } overload V = {rV_bits, wV_bits, rV, wV} val init_vregs : unit -> unit function init_vregs () = { let zero_vreg : vlenbits = zeros(); vr0 = zero_vreg; vr1 = zero_vreg; vr2 = zero_vreg; vr3 = zero_vreg; vr4 = zero_vreg; vr5 = zero_vreg; vr6 = zero_vreg; vr7 = zero_vreg; vr8 = zero_vreg; vr9 = zero_vreg; vr10 = zero_vreg; vr11 = zero_vreg; vr12 = zero_vreg; vr13 = zero_vreg; vr14 = zero_vreg; vr15 = zero_vreg; vr16 = zero_vreg; vr17 = zero_vreg; vr18 = zero_vreg; vr19 = zero_vreg; vr20 = zero_vreg; vr21 = zero_vreg; vr22 = zero_vreg; vr23 = zero_vreg; vr24 = zero_vreg; vr25 = zero_vreg; vr26 = zero_vreg; vr27 = zero_vreg; vr28 = zero_vreg; vr29 = zero_vreg; vr30 = zero_vreg; vr31 = zero_vreg } // vector csrs register vstart : xlenbits register vl : xlenbits let VLENB : xlenbits = to_bits(vlen / 8) bitfield Vtype : xlenbits = { vill : xlen - 1, reserved : xlen - 2 .. 8, vma : 7, vta : 6, vsew : 5 .. 3, vlmul : 2 .. 0 } register vtype : Vtype type SEW_pow = range(3, 6) mapping sew_pow_val : bits(3) <-> SEW_pow = { 0b000 <-> 3, 0b001 <-> 4, 0b010 <-> 5, 0b011 <-> 6, } type LMUL_pow = range(-3, 3) mapping lmul_pow_val : bits(3) <-> LMUL_pow = { 0b101 <-> -3, 0b110 <-> -2, 0b111 <-> -1, 0b000 <-> 0, 0b001 <-> 1, 0b010 <-> 2, 0b011 <-> 3, } function is_invalid_sew_pow(v : bits(3)) -> bool = v >_u 0b011 function is_invalid_lmul_pow(v : bits(3)) -> bool = v == 0b100 // the dynamic selected element width (SEW) // this returns the power of 2 for SEW function get_sew_pow() -> SEW_pow = { let sew_pow = vtype[vsew]; sew_pow_val(sew_pow) } // Valid SEW sizes in bits. type sew_bitsize = {8, 16, 32, 64} type is_sew_bitsize('n) -> Bool = 'n in {8, 16, 32, 64} // this returns the actual value of SEW function get_sew() -> sew_bitsize = 2 ^ get_sew_pow() // this returns the value of SEW in bytes function get_sew_bytes() -> {1, 2, 4, 8} = get_sew() / 8 // the vector register group multiplier (LMUL) // this returns the power of 2 for LMUL val get_lmul_pow : unit -> LMUL_pow function get_lmul_pow() = { let lmul_pow = vtype[vlmul]; lmul_pow_val(lmul_pow) } enum agtype = { UNDISTURBED, AGNOSTIC } val decode_agtype : bits(1) -> agtype function decode_agtype(ag) = { match ag { 0b0 => UNDISTURBED, 0b1 => AGNOSTIC } } val get_vtype_vma : unit -> agtype function get_vtype_vma() = decode_agtype(vtype[vma]) val get_vtype_vta : unit -> agtype function get_vtype_vta() = decode_agtype(vtype[vta]) bitfield Vcsr : bits(3) = { vxrm : 2 .. 1, vxsat : 0 } register vcsr : Vcsr mapping clause csr_name_map = 0x008 <-> "vstart" mapping clause csr_name_map = 0x009 <-> "vxsat" mapping clause csr_name_map = 0x00A <-> "vxrm" mapping clause csr_name_map = 0x00F <-> "vcsr" mapping clause csr_name_map = 0xC20 <-> "vl" mapping clause csr_name_map = 0xC21 <-> "vtype" mapping clause csr_name_map = 0xC22 <-> "vlenb" function clause is_CSR_accessible(0x008, _, _) = currentlyEnabled(Ext_V) // vstart function clause is_CSR_accessible(0x009, _, _) = currentlyEnabled(Ext_V) // vxsat function clause is_CSR_accessible(0x00A, _, _) = currentlyEnabled(Ext_V) // vxrm function clause is_CSR_accessible(0x00F, _, _) = currentlyEnabled(Ext_V) // vcsr function clause is_CSR_accessible(0xC20, _, _) = currentlyEnabled(Ext_V) // vl function clause is_CSR_accessible(0xC21, _, _) = currentlyEnabled(Ext_V) // vtype function clause is_CSR_accessible(0xC22, _, _) = currentlyEnabled(Ext_V) // vlenb function clause read_CSR(0x008) = vstart function clause read_CSR(0x009) = zero_extend(vcsr[vxsat]) function clause read_CSR(0x00A) = zero_extend(vcsr[vxrm]) function clause read_CSR(0x00F) = zero_extend(vcsr.bits) function clause read_CSR(0xC20) = vl function clause read_CSR(0xC21) = vtype.bits function clause read_CSR(0xC22) = VLENB // Note: The spec recommends trapping if vstart is out of bounds but the // current implementation does not yet do that. function set_vstart(value : bits(16)) -> unit = { dirty_v_context(); vstart = zero_extend(value[(vlen_exp - 1) .. 0]); csr_write_callback("vstart", vstart); } val ext_write_vcsr : (bits(2), bits(1)) -> unit function ext_write_vcsr (vxrm_val, vxsat_val) = { vcsr[vxrm] = vxrm_val; // Note: frm can be an illegal value, 101, 110, 111 vcsr[vxsat] = vxsat_val; dirty_v_context() } function clause write_CSR(0x008, value) = { set_vstart(value[15 .. 0]); Ok(vstart) } function clause write_CSR(0x009, value) = { ext_write_vcsr (vcsr[vxrm], value[0 .. 0]); Ok(zero_extend(vcsr[vxsat])) } function clause write_CSR(0x00A, value) = { ext_write_vcsr (value[1 .. 0], vcsr[vxsat]); Ok(zero_extend(vcsr[vxrm])) } function clause write_CSR(0x00F, value) = { ext_write_vcsr (value [2 .. 1], value [0 .. 0]); Ok(zero_extend(vcsr.bits)) }