1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
function clause currentlyEnabled(
Ext_V) =
hartSupports(
Ext_V)
& (
misa[
V]
== 0b1)
& (
mstatus[
VS]
!= 0b00)
& currentlyEnabled(
Ext_Zicsr)
val get_num_elem : (
int,
sew_bitsize) ->
nat1
function get_num_elem(
LMUL_pow,
SEW) = {
let LMUL_pow_reg =
if LMUL_pow < 0 then 0 else LMUL_pow;
let num_elem = (2 ^
LMUL_pow_reg)
* vlen / SEW;
assert(
num_elem > 0);
num_elem
}
val read_single_vreg :
forall 'n 'm,
'n >= 0 & is_sew_bitsize(
'm) . (
int(
'n),
int(
'm),
vregidx) ->
vector(
'n,
bits(
'm))
function read_single_vreg(
num_elem,
SEW,
vrid) = {
assert(
num_elem * SEW <= vlen);
let bv =
V(
vrid);
var result :
vector(
'n,
bits(
'm)) =
vector_init(
zeros());
foreach (
i from 0 to (
num_elem - 1)) {
let start_index =
i * SEW;
result[
i] =
bv[
start_index + SEW - 1 ..
start_index];
};
result
}
val write_single_vreg :
forall 'n 'm,
'n >= 0 & is_sew_bitsize(
'm) . (
int(
'n),
int(
'm),
vregidx,
vector(
'n,
bits(
'm))) ->
unit
function write_single_vreg(
num_elem,
SEW,
vrid,
v) = {
var r :
vlenbits =
zeros();
assert(
SEW <= vlen);
foreach (
i from (
num_elem - 1)
downto 0) {
r =
r << SEW;
r =
r | zero_extend(
v[
i]);
};
V(
vrid) =
r
}
val read_vreg :
forall 'n 'm 'p,
'n >= 0 & is_sew_bitsize(
'm) . (
int(
'n),
int(
'm),
int(
'p),
vregidx) ->
vector(
'n,
bits(
'm))
function read_vreg(
num_elem,
SEW,
LMUL_pow,
vrid) = {
let vrid_val =
unsigned(
vregidx_bits(
vrid));
var result :
vector(
'n,
bits(
'm)) =
vector_init(
zeros());
let LMUL_pow_reg =
if LMUL_pow < 0 then 0 else LMUL_pow;
if vrid_val + 2 ^
LMUL_pow_reg > 32 then {
assert(
false,
"invalid register group: vrid overflow the largest number")
}
else if vrid_val % (2 ^
LMUL_pow_reg)
!= 0 then {
assert(
false,
"invalid register group: vrid is not a multiple of EMUL")
}
else {
if num_elem * SEW < vlen then {
result =
read_single_vreg(
'n,
SEW,
vrid);
}
else {
let 'num_elem_single =
vlen / SEW;
assert(
'num_elem_single >= 0);
foreach (
i_lmul from 0 to (2 ^
LMUL_pow_reg - 1)) {
let r_start_i :
int =
i_lmul * 'num_elem_single;
let r_end_i :
int =
r_start_i + 'num_elem_single - 1;
let vrid_lmul :
vregidx =
vregidx_offset(
vrid,
to_bits_unsafe(
5,
i_lmul));
let single_result :
vector(
'num_elem_single,
bits(
'm)) =
read_single_vreg(
'num_elem_single,
SEW,
vrid_lmul);
foreach (
r_i from r_start_i to r_end_i) {
let s_i :
int =
r_i - r_start_i;
assert(
0 <= r_i & r_i < num_elem);
assert(
0 <= s_i & s_i < 'num_elem_single);
result[
r_i] =
single_result[
s_i];
}
}
}
};
result
}
val read_single_element :
forall 'm,
is_sew_bitsize(
'm) . (
int(
'm),
nat,
vregidx) ->
bits(
'm)
function read_single_element(
EEW,
index,
vrid) = {
assert(
EEW <= vlen);
let elem_per_reg =
vlen / EEW;
let reg_in_group =
index / elem_per_reg;
assert(
reg_in_group < 8);
let vrid =
vrid + reg_in_group;
let index =
index % elem_per_reg;
let offset =
index * EEW;
V(
vrid)[(
offset + EEW - 1) ..
offset]
}
val write_vreg :
forall 'n 'm 'p,
'n >= 0 & is_sew_bitsize(
'm) . (
int(
'n),
int(
'm),
int(
'p),
vregidx,
vector(
'n,
bits(
'm))) ->
unit
function write_vreg(
num_elem,
SEW,
LMUL_pow,
vrid,
vec) = {
let LMUL_pow_reg =
if LMUL_pow < 0 then 0 else LMUL_pow;
let 'num_elem_single =
vlen / SEW;
assert(
'num_elem_single >= 0);
foreach (
i_lmul from 0 to (2 ^
LMUL_pow_reg - 1)) {
var single_vec :
vector(
'num_elem_single,
bits(
'm)) =
vector_init(
zeros());
let vrid_lmul :
vregidx =
vregidx_offset(
vrid,
to_bits_unsafe(
5,
i_lmul));
let r_start_i :
int =
i_lmul * 'num_elem_single;
let r_end_i :
int =
r_start_i + 'num_elem_single - 1;
foreach (
r_i from r_start_i to r_end_i) {
let s_i :
int =
r_i - r_start_i;
assert(
0 <= r_i & r_i < num_elem);
assert(
0 <= s_i & s_i < 'num_elem_single);
single_vec[
s_i] =
vec[
r_i]
};
write_single_vreg(
'num_elem_single,
SEW,
vrid_lmul,
single_vec)
}
}
val write_single_element :
forall 'm,
is_sew_bitsize(
'm) . (
int(
'm),
nat,
vregidx,
bits(
'm)) ->
unit
function write_single_element(
EEW,
index,
vrid,
value) = {
assert(
EEW <= vlen);
let elem_per_reg =
vlen / EEW;
let reg_in_group =
index / elem_per_reg;
assert(
reg_in_group < 8);
let vrid =
vrid + reg_in_group;
let index =
index % elem_per_reg;
let offset =
index * EEW;
V(
vrid) = [
V(
vrid)
with (
offset + EEW - 1) ..
offset =
value];
}
val read_vmask :
forall 'n,
'n > 0. (
int(
'n),
bits(
1),
vregidx) ->
bits(
'n)
function read_vmask(
num_elem,
vm,
vrid) = {
assert(
num_elem <= vlen);
let vreg_val =
V(
vrid);
var result :
bits(
'n) =
ones();
if vm == 0b1 then {
return result
};
foreach (
i from 0 to (
num_elem - 1)) {
result[
i] =
vreg_val[
i]
};
result
}
val read_vmask_carry :
forall 'n,
'n > 0. (
int(
'n),
bits(
1),
vregidx) ->
bits(
'n)
function read_vmask_carry(
num_elem,
vm,
vrid) = {
assert(
num_elem <= vlen);
let vreg_val =
V(
vrid);
var result :
bits(
'n) =
zeros();
if vm == 0b1 then {
return result
};
foreach (
i from 0 to (
num_elem - 1)) {
result[
i] =
vreg_val[
i]
};
result
}
val write_vmask :
forall 'n,
'n > 0. (
int(
'n),
vregidx,
bits(
'n)) ->
unit
function write_vmask(
num_elem,
vrid,
v) = {
assert(
0 < num_elem & num_elem <= vlen);
let vreg_val =
V(
vrid);
var result :
vlenbits =
undefined;
foreach (
i from 0 to (
num_elem - 1)) {
result[
i] =
v[
i]
};
foreach (
i from num_elem to (
vlen - 1)) {
result[
i] =
vreg_val[
i] };
V(
vrid) =
result
}